Article ID Journal Published Year Pages File Type
9522130 Earth and Planetary Science Letters 2005 20 Pages PDF
Abstract
To comply with the fact that subducted pore waters are rich in sulfate and that there is striking evidence for fluid conduits at various depths we performed additional model runs, where we simulated fluid flow by using a Gauss-type rate law, allowing us to define distinct fluid sources. We can demonstrate that combined methane production in the upper plate sediments and sulfate reduction at the top of the down going slab is sufficient to prevent the upward movement of the zone of anaerobic oxidation of methane (AOM) to above the décollement at given upward advection rates. Steep pore water gradients along the plate boundary can be explained by lateral backflow within oceanic plate sediments. On a long term (in the order of at least some 100,000 years), fluid flow along conduits is likely to occur at low rates with temporarily increased pulses. All modeled runs are constrained by their compatibility to observed pore water profiles.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, ,