Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9522192 | Earth and Planetary Science Letters | 2005 | 8 Pages |
Abstract
The lack of temporal resolution and accurate chronology of Southern Ocean marine cores has hampered comparison of glacial millennial-scale oscillations between the Southern Ocean, Antarctic ice and other records from both hemispheres. In this study, glacial climate variability is investigated over the last 50 ka using a multi-proxy approach. A precise chrono-stratigraphy was developed on the high-sedimentation rate core MD94-103 (Indian Southern Ocean, 45°35â²S 86°31â²E, 3560 m water depth) by geomagnetic synchronization between the later core and NAPIS75, and 14C dates. High-resolution time-series of δ18O in planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma, and sea surface temperatures (SSTs) estimated from the alkenone UKâ²37 index and foraminifera assemblages have been generated. Temporal evolution of the two temperature proxy records is notably different during the last glacial period. While foraminifera data indicate a consistent cooling towards the last glacial maximum, anomalous warm glacial alkenone temperatures suggest a strong advection of ãwarmã “detrital” alkenones by surface waters of the Agulhas current. Superimposed to this general trend, during Heinrich events, foraminiferal SSTs point to warmer surface waters, while concurrent alkenone SSTs exhibit apparent coolings probably caused by enhanced local alkenone production. By analogy to modern observations, possible influence of ENSO-like conditions on the subantarctic Southern Ocean SSTs is discussed.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Marie Alexandrine Sicre, Laurent Labeyrie, Ullah Ezat, Josette Duprat, Jean Louis Turon, Sabine Schmidt, Elisabeth Michel, Alain Mazaud,