Article ID Journal Published Year Pages File Type
9522254 Earth and Planetary Science Letters 2005 11 Pages PDF
Abstract
Notwithstanding the great deal of attention that the Messinian evaporites of the Mediterranean region have received from an observational point of view, there is, to date, no consensus as to their mechanism of formation. We aim to contribute to the investigation through a quantitative analysis of the processes of desiccation and re-filling. These processes are thought to have played a role in particular during the deposition of the upper part of the evaporite sequence. We calculate the evolution of sea level and average salinity based on both the present-day geometry and a paleogeographic reconstruction and assess the sensitivity to variations in the freshwater budget. Our results support previous inferences that desiccation and re-filling are fast; desiccation occurs on a time scale of 3-8 kyr, re-filling probably even faster. Equilibrium sea levels imply that most water has gone from the western basin while a significant water column remains in the eastern basin. Whether or not the eastern basin reaches the level of halite saturation depends critically on, in particular, the freshwater budget. The fast rate of desiccation and re-filling imply that temporal differences in the onset of salt precipitation between western and eastern basin and between marginal basins and basin centres are below the resolution of (astronomical) dating. Also, when Atlantic sea level periodically varied from below to above the level of the intervening sill, the Mediterranean basin will have responded with repeated desiccation and re-filling. Fast re-filling is found to require only a small connection to the Atlantic Ocean. This, in combination with the previous results, suggests the Mediterranean is unlikely to attain stable intermediate water levels.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, ,