Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9524454 | Journal of South American Earth Sciences | 2005 | 18 Pages |
Abstract
Ramada Plateau Neoproterozoic volcanism represents a portion of the shoshonitic and mildly alkaline magmatism related to postcollisional events of the Brasiliano/Pan African cycle of southernmost Brazil. It is constituted by shoshonitic basic-intermediate lavas, followed by a bimodal sequence characterized by pyroclastic deposits, lava flows, and hypabyssal rocks with ages of 549±5 Ma. The shoshonitic magmatism presents greater K2O than Na2O2, K2O/Na2O ratios close to 1, and moderate large ion lithophile and high-field strength element contents. The bimodal basic-acid volcanism presents a transitional chemical affinity with features of sodic, silica-saturated alkaline to continental tholeiitic series. Observed basic and acid rocks with contrasting Ti contents are referred to as high- and low-Ti basalt-rhyolites. Another group of acid rocks with higher Nb, Ta, and Rb values was identified as high-Nb rhyolites. The Ramada Plateau magmatism is comparable to associations related to the final stages of orogenic cycles, in which shoshonitic and high- and low-Ti alkaline magmatism reflects the melting of subduction-modified sources, whereas the high-Nb magmas show less influence of subduction-related metasomatism and are closer to magmas produced from anorogenic sources. A model of magma generation in collisional settings involving slab break-off and asthenospheric upwelling is applied to the evolution of magmatism from subduction-related to anorogenic in the Ramada Plateau.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Carlos Augusto Sommer, Evandro Fernandes de Lima, Lauro Valentim Stoll Nardi, Ana Maria Graciano Figueiredo, Ronaldo Pierosan,