Article ID Journal Published Year Pages File Type
9524837 Geomorphology 2005 16 Pages PDF
Abstract
Horizontal fluctuations showed a (fairly) good correlation with height because the wind speed at both sensors was affected by the same vortices. The correlation coefficients ranged from 0.42 (when the distance between the sensors was 1.75 m) to 0.92 (when the distance was 0.25 m). The instantaneous Reynolds' stress had the weakest correlation (correlation coefficient of 0.05 at 1.75 m between the sensors and 0.56 at 0.25 m between the sensors), because the momentum at 2 m above the soil surface is transported by different eddies than those close to the ground. This also explains the fairly good correlation coefficients between the horizontal components of the wind and saltation compared to the poor correlations between instantaneous Reynolds' stress and saltation. An increase in sampling time did not have much impact on these correlation coefficients up to sampling periods of about 30 s. However, this sampling interval would be too coarse to describe the vertical wind component adequately. The classification of the moments of shear stress into the turbulent structures, sweeps, ejections, inward and outward interactions, showed that the mean saltation flux is higher at sweeps and outward interactions than at ejections and inward interactions. Also, saltation occurred more often during sweeps and outward interactions than during ejections and inward interactions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,