Article ID Journal Published Year Pages File Type
9526981 Tectonophysics 2005 16 Pages PDF
Abstract
Pseudotachylyte is exposed in 22 sub-parallel veins (∼ N80°E, 90°) each less than 2 cm wide across an outcrop width of 45 m. The pseudotachylyte matrix is commonly banded, and contains crystal fragments (quartz, plagioclase, amphibole, rutile, apatite, ilmenite, ulvöspinel), magnetite microlites, flow banding swirls, amygdules (filled with calcite, ankerite and siderite), collapsed vesicles, and abundant lithic clasts. Pseudotachylyte formed in a number of phases. Kinematic reconstruction is complex, utilizing winged porphyroclasts, S-C structures in the country rock, and fault drag indicators along the pseudotachylyte zones. Dextral motion along the YMSZ is the most common observation. Mechanically twinned calcite within amygdules in the pseudotachylyte preserves horizontal shortening normal to the pseudotachylyte strike. Calcite veins are apparently contemporaneous with the pseudotachylyte; one set preserves twinning strains identical to the calcite amygdule strains, and the second set contains a horizontal, vein-parallel (N70°E) shortening strain. The pseudotachylyte contains a flow fabric, as determined by AMS techniques, that is a proxy for vertical flow (Kmax is vertical). The Kenora-Kabetogama dikes, identified geochemically, are locally parallel to the pseudotachylyte and the adjacent YMSZ tectonic suture and preserve a vertical-to-horizontal, dike-parallel AMS fabric from east (Franklin) to west (Granite Falls). Hornblende andesite dikes (055°, 1.8 Ga) are not found south of the suture, are not associated with pseudotachylyte and have a different paleopole and AMS fabric.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,