Article ID Journal Published Year Pages File Type
9530309 Geochimica et Cosmochimica Acta 2005 16 Pages PDF
Abstract
To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4·12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,