Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9532028 | Lithos | 2005 | 13 Pages |
Abstract
Both xenotime-(Y) and monazite-(Ce) are unstable during fluid-activated overprinting. Low temperature alteration of monazite in S-type granites leads to the formation of apatite enriched in the britholite component, but low to medium grades of metamorphism result in the formation of apatite and LREE enriched epidote (partly allanite) as a corona enclosing the monazite-(Ce) core. Xenotime-(Y) shows a similar alteration pattern, but with different REE distributions within the products. At greenschist/amphibolite facies, rims of secondary Y-rich apatite and Y-rich epidote form around xenotime-(Y). In low-Ca granites however, apatite is missing from this alteration assemblage as xenotime-(Y) breaks down directly to Y-enriched epidote. The relative mobilities of the heavy and light REE are different during breakdown of monazite and xenotime. The fluid responsible for the breakdown of monazite and xenotime contains elements released from alteration of anorthite (Ca) and biotite (Si, Al and F).
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Igor Broska, C. Terry Williams, Marian Janák, Géza Nagy,