Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9537400 | Quaternary Science Reviews | 2005 | 11 Pages |
Abstract
The early part of marine isotopic Stage 11 near 400,000 years ago provides the closest analog to Holocene insolation levels of any interglaciation during the era of strong 100,000-year climatic cycles. The CH4 concentration measured in Vostok ice fell to â¼450 ppb, and CO2 values to â¼250 ppm. These natural decreases contrast with the increases in recent millennia and support the early anthropogenic hypothesis of major gas emissions from late-Holocene farming. During the same interval, δD values fell from typical interglacial to nearly glacial values, indicating a major cooling in Antarctica early in Stage 11. Other evidence suggests that new ice was accumulating during the closest insolation analog to the present day: a major increase in δ18Oatm at Vostok, a similar increase in marine δ18O values, and re-initiation of ice rafting in the Nordic Sea. The evidence permits extended (>20,000 year) intervals of Stage 11 interglacial warmth in the Antarctic and North Atlantic, yet it also requires that this warmth ended and a new glacial era began when insolation was most similar to recent millennia. The Holocene CO2 anomaly was produced only in part by direct anthropogenic emissions; over half of the anomaly resulted from the failure of CO2 values to fall as they had during previous interglaciations because of natural responses, including a sea-ice advance in the Antarctic and ice-sheet growth in the northern hemisphere.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
William F. Ruddiman,