Article ID Journal Published Year Pages File Type
9546963 ISA Transactions 2005 13 Pages PDF
Abstract
This paper presents the design of model-based globally linearizing control (GLC) structure for a distillation process within the differential geometric framework. The model of a nonideal binary distillation column, whose characteristics were highly nonlinear and strongly interactive, is used as a real process. The classical GLC law is comprised of a transformer (input-output linearizing state feedback), a nonlinear state observer, and an external PI controller. The tray temperature based short-cut observer (TTBSCO) has been used as a state estimator within the control structure, in which all tray temperatures were considered to be measured. Accordingly, the liquid phase composition of each tray was calculated online using the derived temperature-composition correlation. In the simulation experiment, the proposed GLC coupled with TTBSCO (GLC-TTBSCO) outperformed a conventional PI controller based on servo performances with and without measurement noise as well as on regulatory behaviors. In the subsequent part, the GLC law has been synthesized in conjunction with tray temperature based reduced-order observer (GLC-TTBROO) where the distillate and bottom compositions of the distillation process have been inferred from top and bottom product temperatures respectively, which were measured online. Finally, the comparative performance of the GLC-TTBSCO and the GLC-TTBROO has been addressed under parametric uncertainty and the GLC-TTBSCO algorithm provided slightly better performance than the GLC-TTBROO. The resulting control laws are rather general and can be easily adopted for other binary distillation columns.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,