Article ID Journal Published Year Pages File Type
9567637 Applied Surface Science 2005 7 Pages PDF
Abstract
The investigations on the properties of HfO2 dielectric layers grown by metalorganic molecular beam epitaxy were performed. Hafnium-tetra-tert-butoxide, Hf(C4H9O)4 was used as a Hf precursor and pure oxygen was introduced to form an oxide layer. The grown film was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and capacitance-voltage (C-V) and current-voltage (I-V) analyses. As an experimental variable, the O2 flow rate was changed from 2 to 8 sccm while the other experimental conditions were fixed. The XPS spectra of Hf 4f and O 1s shifted to the higher binding energy due to the charge transfer effect and the density of trapped charges in the interfacial layer was increased as the oxygen flow rate increased. The observed microstructure indicated the HfO2 layer was polycrystalline, and the monoclinic phases are the dominant crystal structure. From the C-V analyses, k = 14-16 and EOT = 44-52 were obtained, and the current densities of (3.2-3.3) × 10−3 A/cm2 were measured at −1.5 V gate voltage from the I-V analyses.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,