Article ID Journal Published Year Pages File Type
9572459 Applied Surface Science 2005 7 Pages PDF
Abstract
The stability of different vanadium-based catalysts for the selective oxidation of small hydrocarbons under the ultra-high vacuum (UHV) conditions of standard X-ray photoelectron spectroscopy (XPS) was studied by using a multi-purpose surface analysis apparatus which allows time spans of only a few minutes between the sample transfer into vacuum and the first photoelectron spectrum. For vanadium phosphorus oxide catalysts a significant dependence of the average vanadium oxidation state on the time of exposure to the UHV was observed, with a substantial decrease of the V+5/V+4 ratio within only a few minutes. A much less pronounced reduction was found for alumina-supported VOx catalysts. The observed changes are predominantly due to the vacuum environment with a rather minor (if at all) contribution of the X-ray excitation.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,