Article ID Journal Published Year Pages File Type
9573352 Biophysical Chemistry 2005 10 Pages PDF
Abstract
There is a necessary energetic linkage between ligand binding and stability in biological molecules. The critical glutamate in Site 4 was mutated to create two mutants of the C-domain of calmodulin yielding E140D and E140Q. These proteins were stably folded in the absence of calcium, but had dramatically impaired binding of calcium. We determined the stability of the mutant proteins in the absence and presence of calcium using urea-induced unfolding monitored by circular dichroism (CD) spectroscopy. These calcium-dependent unfolding curves were fit to models that allowed for linkage of stability to binding of a single calcium ion to the native and unfolded states. Simultaneous analysis of the unfolding profiles for each mutant yielded estimates for calcium-binding constants that were consistent with results from direct titrations monitored by fluorescence. Binding to the unfolded state was not an important energetic contributor to the ligand-linked stability of these mutants.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,