Article ID Journal Published Year Pages File Type
9575423 Chemical Physics 2005 18 Pages PDF
Abstract
Two-component relativistic pseudopotentials (i.e., scalar-relativistic and spin-orbit (SO) potentials) of the energy-consistent variety have been adjusted for the group 11 and 12 atoms Cu, Zn; Ag, Cd; Au, Hg, replacing the 1s-2p; 1s-3d; and 1s-4f cores, respectively. The adjustment has been done for the valence-energy spectrum of (near-)neutral atoms, to reference data from numerical all-electron four-component multi-configuration Dirac-Hartree-Fock (MCDHF) calculations, including the two-electron Breit interaction. For use in molecular calculations, the potentials have been supplemented by energy-optimized (12s12p9d3f2g)/[6s6p4d3f2g] valence basis sets. First benchmark applications of the potentials and basis sets are presented for atomic excitation energies and SO splittings at a correlated level, and for ground and excited state spectroscopic properties of group 11 monohalides and group 12 dimers.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,