Article ID Journal Published Year Pages File Type
9575440 Chemical Physics 2005 7 Pages PDF
Abstract
Green fluorescent protein (GFP) is used as a biological marker. It is a protein in the jellyfish, Aequorea victorea, which is found in the cold Pacific Northwest. Mature GFP, i.e. fully fluorescent GFP, is most efficiently formed at temperatures well below 37 °C. The GFPuv (F99S/M153T/V163A) and S147P-GFP mutants mature more efficiently at room temperature than wild-type GFP, and therefore result in increased fluorescence at room temperature. Computational methods have been used to examine whether the low-energy precyclized forms of these improved GFP-mutants are preorganized so that they can more efficiently form the chromophore than the wild-type and S65T-GFP. All mutations examined (S147P, F99S, M153T, V163A and F99S/M153T/V163A) more efficiently preorganize the immature precyclized forms of GFP for chromophore formation than immature wild-type GFP. It has been proposed that Arg96 is involved in chromophore formation. Our calculations suggest that the M153T and V163A mutations in GFPuv maybe partially responsible for the increased maturation efficiency observed in GFPuv because they improve the Arg96-Tyr66 interaction. The same is true for the S147P mutation in S147P-GFP.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,