Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9589461 | Journal of Molecular Spectroscopy | 2005 | 11 Pages |
Abstract
142NdO molecules have been produced by heating 142Nd2O3 to about 2100 K in a vacuum furnace in the presence of argon gas. A ring dye laser operating with DCM dye has been used to excite 142NdO transitions in the 636-666 nm spectral region, and induced fluorescence has been spectroscopically analysed at high resolution with a Fourier transform spectrometer. Contributions from thermal emission have been simultaneously observed. Two new low-lying electronic states have been detected, at energies of about 2708 and 4139 cmâ1, designated as [2.7], most probably observed at ν = 1, and [4.1], likely to be (2)6 (observed at ν = 0). The ν = 1 level of the (1)6 state, already known at ν = 0, has been observed for the first time. Most levels pumped by the laser, between 14 000 and 17 400 cmâ1, could be identified from earlier work. In addition, by studying in more detail recently obtained fluorescence spectra [J. Mol. Spectrosc. 225 (2004) 132] spectroscopic constants have been improved for a number of states. Finally, from thermal emission spectra, rotational analyses of the 0-0 bands of two new systems, [16.4] â (2)5 and [14.1] â X4, and reanalyses at higher resolution of the 0-0 bands of the systems V, VII, VIII, and X have been carried out. A consistent set of spectroscopic constants of the levels of 142NdO characterized as yet is presented.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
C. Effantin, A. Bernard, P. Crozet, A.J. Ross, J. d'Incan,