Article ID Journal Published Year Pages File Type
9594687 Surface Science 2005 14 Pages PDF
Abstract
The adsorption of 1,3,5,7-cyclooctatetraene (COT) on Ru(0 0 1) is studied by temperature-programmed desorption (TPD), work function measurements, as well as time- and angle-resolved two-photon photoemission (2PPE) spectroscopy. The TPD data show that COT films grow at 115 K in a metastable phase when the coverage is increased from the chemisorbed monolayer to the bulk-like molecular multilayer structure. The metastable states desorb at a temperature which is ≈9 K lower than the desorption temperature of the stable multilayer. At 165 ± 2 K, they undergo an irreversible and thermally activated transformation into the stable multilayer phase. This transition is accompanied by a pronounced increase in the total 2PPE yield by more than one order of magnitude as well as the appearance of image potential states. The image states have binding energies of −0.70 eV and −0.24 eV for the n = 1 and n = 2 states, respectively, and a lifetime of 20 ± 5 fs for both states. Their appearance is interpreted as an indication of island formation in the stable multilayer regime. 2PPE spectroscopy of the image potential states provides a sensitive probe of structural transitions in the adsorbate layers.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,