Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9607885 | Applied Catalysis A: General | 2005 | 8 Pages |
Abstract
Complexes of type [M(SAH)(OH2)], where M is Mn(II),Co(II),Ni(II) and Cu(II), and SAH is the Schiff-base formed by condensation of salicylaldehyde (2Â equiv.) and hydrazine (1Â equiv.), bis(salicylaldiminato)hydrazone, or “2-({(z)-2-[(E)-1-(2-hydroxyphenyl)methylidene]hydrazono}methyl)phenol” have been prepared and characterized by elemental analysis, IR, UV-vis spectroscopy, conductometric, small area X-ray photoelectron spectroscopy and magnetic measurements. Elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The results indicate that the Schiff-base ligand coordinates through one azomethine nitrogen and two phenolic oxygen to the metal ions. Conductance measurements suggest the non-electrolytic nature of the complexes. The atomic concentration of the complexes showed the ratio of M:N:OÂ =Â 1:2:3, that indicates that a water molecule was in the complex. Alumina-supported complexes “[M(SAH)OH2]-Al2O3” catalyze the oxidation of cyclohexene with tert-butylhydroperoxide (TBHP). The major products of the reaction were 2-cyclohexene-1-ol, 2-cyclohexene-1-one and 2-cyclohexene-1-(tert-butylperoxy). The influence of solvent on the oxidation reaction has been studied. [M(SAH)OH2]-Al2O3 shows significantly higher catalytic activity than other alumina-supported complexes. These catalysts can also be reused in the oxidation of cyclohexene several times. The new materials “[M(SAH)OH2]-Al2O3” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV-vis, XRD, DRS).
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Catalysis
Authors
Masoud Salavati-Niasari, Ahmad Amiri,