Article ID Journal Published Year Pages File Type
9610580 Catalysis Today 2005 11 Pages PDF
Abstract
The influence of niobium on the physicochemical properties of the MoVO system and on its catalytic properties in the oxidation of ethane to ethylene and acetic acid is examined. Solids based on MoV0.4Ox and MoV0.4Nb0.12Oy composition and calcined at 350 or 400 °C were studied by X-ray diffraction, and by laser Raman and X-ray photoelectron spectroscopies. Their reactivity during reduction and reoxidation was examined by in situ XRD and by XPS after pre-treatment. Their stability in air was evaluated by means of Raman spectroscopy during laser heating of particles. Niobium is responsible for both stabilization and nanosize of MoO3 and (VNbMo)5O14 crystals. The high global selectivity to ethylene and acetic acid (90-96 mol%) is related to the presence of both phases while higher activity is owed to nanoparticles. The model already proposed by Merzouki et al. (Stud. Surf. Sci. Catal., 72 (1992) 81) suggesting that MoVNbO catalysts could be made up from (VNbMo)5O14-type microdomains in MoO3 matrix seems still topical.
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,