Article ID Journal Published Year Pages File Type
9618684 Solar Energy Materials and Solar Cells 2005 7 Pages PDF
Abstract
From the measurements of the electric field dependence of the drift mobility and lifetime, we have found strong evidence for the existence of long-range potential fluctuations in μc-(Si,Ge):H alloys. We determine the depth and range of the potential fluctuations, and subsequently the charged defect density, as a function of the deposition rate. It was found that the film transport properties do not degrade or enhance monotonically with increasing deposition rate; there exists a valley point where the strongest potential fluctuations occur as a result of a significant increase in the charged defect density. Beyond this point, the film quality increases again. The evidence indicates that it is the long-range potential fluctuations that result in the deterioration of the transport properties of μc-(Si,Ge):H alloys. Specifically, it is the increase in the depth, and a decrease in the length of the potential fluctuations, which lead to a decrease in the mobility, and consequently in the photoconductivity. Our present results demonstrate that aside from the increase of charged scattering centers, compositional disorder in the alloys play an important role with the build-up of the potential fluctuations.
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,