Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9639641 | International Journal of Solids and Structures | 2005 | 39 Pages |
Abstract
Transient wave propagation of isotropic thin plates using a higher-order plate theory is presented in this paper. The aim of this investigation is to assess the applicability of the higher-order plate theory in describing wave behavior of isotropic plates at higher frequencies. Both extensional and flexural waves are considered. A complete discussion of dispersion of isotropic plates is first investigated. All the wave modes and wave behavior for each mode in the low and high-frequency ranges are provided in detail. Using the dispersion relation and integral transforms, exact integral solutions for an isotropic plate subjected to pure impulse load and a number of wave excitations based on the higher-order theory are obtained and asymptotic solutions which highlight the physics of waves are also presented. The axisymmetric three-dimensional analytical solutions of linear wave equations are also presented for comparison. Results show that the higher-order theory can predict the wave behavior closely with exact linear wave solutions at higher frequencies.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
S. Yang, F.G. Yuan,