Article ID Journal Published Year Pages File Type
9639762 International Journal of Solids and Structures 2005 22 Pages PDF
Abstract
The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elastic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomogeneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely isotropic phases in two approximations: non-interaction approximation and effective field method. The results are compared with elastic moduli of quasi-random composites.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,