| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 9639782 | International Journal of Solids and Structures | 2005 | 19 Pages |
Abstract
For bimaterials with planar interfaces subjected to a line force and dislocation, Green's functions are determined for all types of anisotropic materials including the nondegenerate, degenerate and extra-degenerate cases. The changes in Green's function caused by material degeneracy are twofold: (i) implicit changes, attributable to material effects only and characterized by high-order eigenvectors and their intrinsic coupling in the higher-order eigensolutions; (ii) explicit changes, influenced by boundary and interface conditions, that cause additional terms in Green's function. Material degeneracy affects the angular variation of the singular stress field, which may have significant implication on the failure prediction of strongly anisotropic materials. For all material types, Green's functions are obtained for bimaterials with a planar interface, and for multi-material wedges subjected to a line force and dislocation at the vertex. The results are expressed in a concise notation in terms of the complete set of eigenvectors and kernel matrices of analytic functions.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Wan-Lee Yin,
