Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9639784 | International Journal of Solids and Structures | 2005 | 14 Pages |
Abstract
Principal parametric resonance in transverse vibration is investigated for viscoelastic beams moving with axial pulsating speed. A nonlinear partial-differential equation governing the transverse vibration is derived from the dynamical, constitutive, and geometrical relations. Under certain assumption, the partial-differential reduces to an integro-partial-differential equation for transverse vibration of axially accelerating viscoelastic nonlinear beams. The method of multiple scales is applied to two equations to calculate the steady-state response. Closed form solutions for the amplitude of the vibration are derived from the solvability condition of eliminating secular terms. The stability of straight equilibrium and nontrivial steady-state response are analyzed by use of the Lyapunov linearized stability theory. Numerical examples are presented to highlight the effects of speed pulsation, viscoelascity, and nonlinearity and to compare results obtained from two equations.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Li-Qun Chen, Xiao-Dong Yang,