| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 9640700 | Journal of Sound and Vibration | 2005 | 20 Pages |
Abstract
The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Eugenio Brusa, Giacomo Zolfini,
