Article ID Journal Published Year Pages File Type
9642581 Soil Dynamics and Earthquake Engineering 2005 9 Pages PDF
Abstract
The vulnerability of hydraulic fill dams under strong earthquake shaking has long been recognized. When located in areas of high seismic hazard, seismic upgrading of these types of dams is often required to meet current dam safety standards. Selection of an appropriate design concept for seismic upgrading of such dams requires careful consideration of seismically induced deformations when the hydraulic fill is to remain as part of the dam. This paper presents a case history of the seismic upgrade of Butt Valley Dam, a hydraulic fill dam located in Northern California. The dam was strengthened to withstand the Maximum Credible Earthquake (MCE) by buttressing of its upstream and downstream slopes. The paper discusses the evaluation of alternatives to upgrade the dam, the design criteria, and the design and analysis of the seismic upgrade. It is shown that a conservative and robust design was developed based on well-established engineering principles and multiple lines of defense, and sound use of analysis procedures including finite-difference non-linear dynamic deformation analyses.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,