Article ID Journal Published Year Pages File Type
9674088 Journal of Hazardous Materials 2005 6 Pages PDF
Abstract
Governing mechanisms of dense non-aqueous phase liquid (DNAPL) removal during surfactant and surfactant-foam (SF) flooding were studied by porous-patterned glass model experiments. Physical forces, viscous forces and capillary forces, acting on trichloroethylene (TCE) blobs were quantified to understand DNAPL removal mechanisms during the floods, simultaneously visualizing the removal mechanisms. The viscous force of the remedial fluid was intimately related to TCE removal from the porous medium. The remedial fluid with a high viscous force displaced more TCE blobs. Displacement of residual TCE by the remedial fluid began as viscous pressure of flooding was closed to the capillary pressure of the porous medium. In the region of viscous pressure less than the capillary pressure, residual TCE was either retained or solubilized, not displaced, implying that TCE solubilization was the dominant TCE removal process. Glass porous model visualization validated a dominance of the capillary forces during a surfactant flush and a dominance of the viscous forces of the displacing fluid during a SF flood.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, ,