Article ID Journal Published Year Pages File Type
9690582 European Journal of Mechanics - B/Fluids 2005 16 Pages PDF
Abstract
This experimental study is devoted to the transition to turbulence of the flow confined between a stationary and a rotating disk. Using visualization and video image analysis, we describe the different transitions occurring in the flow as the rotating velocity of the disk is varied. The space-time behavior of the wave patterns is analyzed using the Bi-Orthogonal Decomposition (BOD) technique. This decomposition of the experimental signals on proper modes permits to project the dynamics of the waves in a reduced embedding phase space. By this means, a torus doubling bifurcation is revealed before its complete destruction during the transition to a weak turbulence. Finally, a more classical 2D-Fourier analysis completes our description of the transition and shows for higher rotation rates, the appearance of a more developed turbulence issued from the former chaotic waves.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,