Article ID Journal Published Year Pages File Type
9691060 International Communications in Heat and Mass Transfer 2005 10 Pages PDF
Abstract
The present paper analyses the entropy generation of the fully developed laminar convection in a helical coil with constant wall heat flux and presents the optimal design based on the minimum entropy generation principal. The important design parameters, including Reynolds number (Re), coil-to-tube radius ratio (δ) and nondimensional coil pitch (λ) are varied to investigate their influences on the entropy generation. The results presented in this paper cover Re range of 100-10,000, δ and λ range from 0.01 to 0.3. Compared with Re and δ, the coil pitch λ is found to have minor influence on the entropy generation. For a demonstrated case, the minimum entropy generation occurs in the range bounded by Re from 2271 to 4277 and δ from 0.17 to 0.3, within which the irreversibility of the system is lowest and the system performance would be optimum. The details show that there is an optimal Re for a helical coil with a fixed δ; meanwhile for a helical coil flow with a specified Re, the smaller δ should be selected when the Re is larger than 5000, and the larger δ should be selected when the Re is less than 5000. These results provide worthwhile information for heat exchanger designers to find the optimal helical coil design from the viewpoint of the thermodynamic second law.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,