Article ID Journal Published Year Pages File Type
9691680 International Journal of Heat and Mass Transfer 2005 11 Pages PDF
Abstract
An experimental study has been conducted on the heat transfer of oscillating flow through a channel filled with aluminum foam subjected to a constant wall heat flux. The surface temperature distribution on the wall, velocity of flow through porous channel and pressure drop across the test section were measured. The characteristics of pressure drop, the effects of the dimensionless amplitude of displacement and dimensionless frequency of oscillating flow on heat transfer in porous channel were analyzed. The results revealed that the heat transfer in oscillating flow is significantly enhanced by employing porous media in a plate channel. The cycle-averaged local Nusselt number increases with both the kinetic Reynolds number Reω and the dimensionless amplitude of flow displacement A0. The length-averaged Nusselt number is effectively increased by increasing the kinetic Reynolds number from 178 to 874 for A0 = 3.1-4.1. Based on the experimental data, a correlation equation of the length-averaged Nusselt number with the dimensionless parameters of Reω and A0 is obtained for a porous channel with L/Dh = 3.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,