Article ID Journal Published Year Pages File Type
9693442 Journal of Non-Newtonian Fluid Mechanics 2005 12 Pages PDF
Abstract
A new, quantitative model to describe the dynamics of polymer molecules grafted on a solid wall is presented. This model is based on the bond vector probability distribution function (BVPDF) which contains the necessary information about the spatial conformations of the grafted chains. All macroscopic quantities of practical interest such as wall shear stress are shown to follow from second moments of the BVPDF. The derived equation of motion for the BVPDF takes into account all important mechanisms on the grafted chain such as retraction, convection, and (convective) constraint release. The proposed model can further be used to derive the quantitative stick-slip law given the molecular and wall surface parameters.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,