Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9699788 | Sensors and Actuators A: Physical | 2005 | 8 Pages |
Abstract
Free-standing SU-8 chips with enclosed microchannels and high density of fluidic inlets have been made in a three-layer process which involves SU-8 to SU-8 adhesive bonding and sacrificial etching. With this process we can fabricate microchannels with depths ranging from 10 to 500 μm, channel widths from 10 to 2000 μm and lengths up to 6 cm. The process is optimized with respect to SU-8 glass transition temperature. Thermal stresses and thickness non-uniformities of SU-8 are compensated by novel mask design features, the auxiliary moats. With these process innovations filling of microchannels can be prevented, non-bonded area is minimized and bonding yields are 90% for large-area microfluidic chips. We have released up to 100 mm in diameter sized microfluidic chips completely from carrier wafers. These free-standing SU-8 chips are mechanically strong and show consistent wetting and capillary filling with aqueous fluids. Fluidic inlets were made in SU-8 chips by adding one lithography step, eliminating through-wafer etching or drilling. In our process the inlet size and density is limited by lithography only.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Santeri Tuomikoski, Sami Franssila,