Article ID Journal Published Year Pages File Type
9702599 Communications in Nonlinear Science and Numerical Simulation 2005 6 Pages PDF
Abstract
Consider an operator equation B(u) − f = 0 in a real Hilbert space. Let us call this equation ill-posed if the operator B′(u) is not boundedly invertible, and well-posed otherwise. The dynamical systems method (DSM) for solving this equation consists of a construction of a Cauchy problem, which has the following properties: (1) it has a global solution for an arbitrary initial data, (2) this solution tends to a limit as time tends to infinity, (3) the limit is the minimal-norm solution to the equation B(u) = f. A global convergence theorem is proved for DSM for equation B(u) − f = 0 with monotone Cloc2 operators B.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,