Article ID Journal Published Year Pages File Type
9706143 International Journal of Mechanical Sciences 2005 19 Pages PDF
Abstract
In this paper, a new numerical solution technique, the differential cubature method, is applied to solve the free vibration problems of arbitrary shaped thick plates. The basic idea of the differential cubature method is to express a linear differential operation such as a continuous function or any order of partial derivative of a multivariable function, as a weighted linear sum of discrete function values chosen within the overall domain of a problem. By using the differential cubature procedure, the governing differential equations and boundary conditions are transformed into sets of linear homogeneous algebraic equations. This is an eigenvalue problem, of which the eigenvalues can be calculated numerically. The subspace iterative method is employed in search of the free vibration frequency parameters. Detailed formulations are presented, and the method is examined here for its suitability for solving the vibration problems of moderately thick plates governed by Mindlin shear deformation theory. The applicability, efficiency and simplicity of the method are demonstrated through solving some example plate vibration problems of different shapes. The numerical accuracy of the method is ascertained by comparing the vibration frequency solutions with those of existing literatures.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,