Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9706624 | International Journal of Non-Linear Mechanics | 2005 | 11 Pages |
Abstract
An axially compressed beam resting on a non-linear foundation undergoes a loss of stability (buckling) via a supercritical pitchfork bifurcation. In the post-buckled regime, it has been shown that under certain circumstances the system may experience a secondary bifurcation. This second bifurcation destablizes the primary buckling mode and the system “jumps” to a higher mode; for this reason, this phenomenon is often referred to as mode jumping. This work investigates two new aspects related to the problem of mode jumping. First, a three mode analysis is conducted. This analysis shows the usual primary and secondary buckling events. But it also shows stable solutions involving the third mode. However, for the cases studied here, there is no natural loading path that leads to this solution branch, i.e. only a contrived loading history would result in this solution. Second, the effect of an initial geometric imperfection is considered. This breaks the symmetry of the system and significantly complicates the bifurcation diagram.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Yin Zhang, Kevin D. Murphy,