Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9706631 | International Journal of Non-Linear Mechanics | 2005 | 9 Pages |
Abstract
Experimental verification of passive non-linear energy pumping in a two-degree-of-freedom system comprising a damped linear oscillator coupled to an essentially non-linear attachment is carried out. In the experiments presented the non-linear attachment interacts with a single linear mode and, hence, energy pumping occurs at a single 'fast' frequency in the neighborhood of the eigenfrequency of the linear mode. Good agreement between simulated and experimental results was observed, in spite of the strongly (essentially) non-linear and transient nature of the dynamics of the system considered. The experiments bear out earlier predictions that a significant fraction of the energy introduced directly to a linear structure by an external impulsive (broadband) load can be transferred (pumped) to an essentially non-linear attachment, and dissipated there locally without spreading back to the system. In addition, the reported experimental results confirm that (a) non-linear energy pumping in systems of coupled oscillators can occur only above a certain threshold of the input energy, and (b) there is an optimal value of the energy input at which a maximum portion of the energy is absorbed and dissipated at the NES.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
D. Michael McFarland, Lawrence A. Bergman, Alexander F. Vakakis,