Article ID Journal Published Year Pages File Type
9709205 Journal of Materials Processing Technology 2005 8 Pages PDF
Abstract
In the present study a laboratory flat rolling machine is utilized to assess the deformation behavior of low and high carbon steel wires in wire flat rolling process. The effects of friction coefficient, rolling reduction and roll speed on rolling force and deformation behavior of the wires are experimentally investigated. It is found that the roll speed affects considerably the rolling force but a negligible effect on deformation behavior. It is noted that by increasing the roll speed, the rolling force may decrease or increase depending on the magnitude of the roll speed. Also, the deformation behavior of the wires in flat rolling is formulated. A relationship is developed for calculating the width of contact area between the wire and rolls as a function of rolling reduction. This relationship depicts that the width of contact area is proportional to square root of rolling reduction. Furthermore, two relationships are derived to predict the spreading of the wires after flat rolling. It is found that the relationships are applicable for both the low and high carbon steel wires.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,