Article ID Journal Published Year Pages File Type
9711170 Journal of the Mechanics and Physics of Solids 2005 17 Pages PDF
Abstract
The actuation stiffness of a set of steel Kagome Double-Layer Grid (KDLG) structures with brazed joints is measured experimentally and compared with predictions by the finite element method. The predicted actuation stiffnesses for the perfect KDLGs much exceed the measured values, and it is argued that the low values of observed actuation stiffness are due to the presence of geometric imperfections introduced during manufacture. In order to assess the significance of geometric defects upon actuation stiffness, finite element calculations are performed on structures with a stochastic dispersion in nodal position from the perfectly periodic arrangement, and on structures with wavy bars. It is found that bar waviness has the dominant effect upon the actuation stiffness. The predicted actuation stiffness for the imperfect structures are in satisfactory agreement with the measured values assuming the same level of imperfection between theory and experiment.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,