Article ID Journal Published Year Pages File Type
972299 Mathematical Social Sciences 2009 12 Pages PDF
Abstract

A first order linear differential equation is used to describe the dynamics of an investment fund that promises more than it can deliver, also known as a Ponzi scheme. The model is based on a promised, unrealistic interest rate; on the actual, realized nominal interest rate; on the rate at which new deposits are accumulated and on the withdrawal rate. Conditions on these parameters are given for the fund to be solvent or to collapse. The model is fitted to data available on Charles Ponzi’s 1920 eponymous scheme and illustrated with a philanthropic version of the scheme.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,