Article ID Journal Published Year Pages File Type
9727726 Physica A: Statistical Mechanics and its Applications 2005 17 Pages PDF
Abstract
Biological networks have been recently found to exhibit many topological properties of the so-called complex networks. It has been reported that they are, in general, both highly skewed and directed. In this paper, we report on the dynamics of a Michaelis-Menten like model when the topological features of the underlying network resemble those of real biological networks. Specifically, instead of using a random graph topology, we deal with a complex heterogeneous network characterized by a power-law degree distribution coupled to a continuous dynamics for each network's component. The dynamics of the model is very rich and stationary, periodic and chaotic states are observed upon variation of the model's parameters. We characterize these states numerically and report on several quantities such as the system's phase diagram and size distributions of clusters of stationary, periodic and chaotic nodes. The results are discussed in view of recent debate about the ubiquity of complex networks in nature and on the basis of several biological processes that can be well described by the dynamics studied.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,