Article ID Journal Published Year Pages File Type
9727814 Physica A: Statistical Mechanics and its Applications 2005 14 Pages PDF
Abstract
We report some experimental results for quasi-two-dimensional electrocrystallization of copper under magnetic fields. Such results are theoretically investigated by large scale simulations of a DLA-like model in which random walkers can move along circular vortices enhanced by the Lorentz force. In addition, a sticking probability is used to take into account the complex reaction dynamics at the cathode surface. Our results indicate that the convective motion does not change the nature of the normal diffusive regime, but increases dramatically the diffusion constant by a factor of up to six. The characteristic features (morphology and scaling laws) of both random walks and growing electrodeposits under a perpendicular magnetic field are determined.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,