Article ID Journal Published Year Pages File Type
9727960 Physica A: Statistical Mechanics and its Applications 2005 15 Pages PDF
Abstract
We propose a scheme for creating Greenberger-Horne-Zeilinger (GHZ) type of entangled states with three superconducting quantum interference device (SQUID) qubits in a microwave cavity. The scheme operates essentially by an auxiliary SQUID built in the cavity as a microwave photon generator, and by performing a phase shift with the aid of the cavity photon. We show that the present scheme does not require identical cavity-SQUID coupling constants for each SQUID. Therefore, our scheme can be readily implemented since neither uniform device parameters nor exact placement of SQUIDs in the cavity is required. We note that the method can in principle be applied to prepare many SQUIDs in a GHZ state. In addition, how to prepare multiple SQUIDs in W-class entangled states is discussed.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,