Article ID Journal Published Year Pages File Type
973315 Mathematical Social Sciences 2008 31 Pages PDF
Abstract

We consider a repeated game where at each stage players simultaneously choose one of the two rooms. The players who choose the less crowded room are rewarded with one euro. The players in the same room do not recognize each other, and between the stages only the current majority room is publicly announced, hence the game has imperfect public monitoring. An undiscounted version of this game was considered by Renault et al. [Renault, J., Scarlatti, S., Scarsini, M., 2005. A folk theorem for minority games. Games Econom. Behav. 53 (2), 208–230], who proved a folk theorem. Here we consider a discounted version and a finitely repeated version of the game, and we strengthen our previous result by showing that the set of equilibrium payoffs Hausdorff-converges to the feasible set as either the discount factor goes to one or the number of repetition goes to infinity. We show that the set of public equilibria for this game is strictly smaller than the set of private equilibria.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,