Article ID Journal Published Year Pages File Type
974385 Physica A: Statistical Mechanics and its Applications 2010 7 Pages PDF
Abstract

In recent years, the study of power-law scaling characteristics of real-life networks has attracted much interest from scholars; it deviates from the Poisson process. In this paper, we take the whole process of aerial inbound operation in a logistics company as the empirical object. The main aim of this work is to study the statistical scaling characteristics of the task-restricted work patterns. We found that the statistical variables have the scaling characteristics of unimodal distribution with a power-law tail in five statistical distributions — that is to say, there obviously exists a peak in each distribution, the shape of the left part closes to a Poisson distribution, and the right part has a heavy-tailed scaling statistics. Furthermore, to our surprise, there is only one distribution where the right parts can be approximated by the power-law form with exponent α=1.50α=1.50. Others are bigger than 1.50 (three of four are about 2.50, one of four is about 3.00). We then obtain two inferences based on these empirical results: first, the human behaviors probably both close to the Poisson statistics and power-law distributions on certain levels, and the human–computer interaction behaviors may be the most common in the logistics operational areas, even in the whole task-restricted work pattern areas. Second, the hypothesis in Vázquez et al. (2006) [A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, A.-L. Barabási. Modeling burst and heavy tails in human dynamics, Phys. Rev. E 73 (2006) 036127] is probably not sufficient; it claimed that human dynamics can be classified as two discrete university classes. There may be a new human dynamics mechanism that is different from the classical Barabási models.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,