Article ID Journal Published Year Pages File Type
9744924 Analytical Biochemistry 2005 7 Pages PDF
Abstract
A fluorometric assay for pepsin and pepsinogen was developed using enhanced green fluorescent protein (EGFP) as a substrate. Acid denaturation of EGFP resulted in a complete loss of fluorescence that was completely reversible on neutralization. In the proteolytic assay procedure, acid-denatured EGFP was digested by pepsin or activated pepsinogen. After neutralization, the remaining amount of undigested EGFP refolded and was determined by fluorescence. Under standard digestion conditions, 4.8-24.0 ng pepsin or pepsinogen was used. Using porcine pepsin as a standard, 38 ± 6.7 ng EGFP was digested per min−1 ng pepsin−1. Activated porcine pepsinogen revealed a similar digestion rate (37.2 ± 5.2 ng EGFP min−1 ng activated pepsinogen−1). The sensitivity of the proteolysis assay depended on the time of digestion and the temperature. Increasing temperature and incubation time allowed quantification of pepsin or pepsinogen in a sample even in the picogram range. The pepsin-catalyzed EGFP digestion showed typical Michaelis-Menten kinetics. Km and Vmax values were determined for the pepsin and activated pepsinogen. Digestion of EGFP by pepsin revealed distinct cleavage sites, as analyzed by SDS-PAGE.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,