Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9745092 | Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics | 2005 | 8 Pages |
Abstract
Hexahydro-1-(isoquinoline-5-sulfonyl)-1H-1,4-diazepine, HA-1077, is a known selective inhibitor of Rho-kinase. Although its IC50 value against Rho-kinase is more than 10 times lower than those for kinases such as PKA, PKB, PKC, PKG, MLCK, CaMKII and others, the molecule still retains relative potent inhibition activities against these kinases. In order to produce highly specific Rho-kinase inhibitors, several HA-1077 analogs were synthesized and their kinase inhibition properties evaluated. (S)-Hexahydro-1-(4-ethenylisoquinoline-5-sulfonyl)-2-methyl-1H-1,4-diazepine was found to be a potent Rho-kinase inhibitor. The IC50 value against Rho-kinase was 6 nM, while those against other kinases remained at almost the same level as that of HA-1077. Furthermore, we designed HA-1077 analogs on the basis of the complex structure of PKA and HA-1077. Amongst these, (S)-hexahydro-4-glycyl-2-methyl-1-(4-methylisoquinoline-5-sulfonyl)-1H-1,4-diazepine and other glycine derivatives were found to be highly specific Rho-kinase inhibitors. These Rho-kinase specific inhibitors were applied to rabbit ocular hypertensive models and were shown to reduce intraocular pressure. These results demonstrate that the new 5-isoquinolinesulfonylamides are not only potent ROCK selective compounds, but are also useful compounds for clinical applications.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Masahiro Tamura, Hiroshi Nakao, Hideo Yoshizaki, Masami Shiratsuchi, Hiromichi Shigyo, Hajime Yamada, Takatoshi Ozawa, Junko Totsuka, Hiroyoshi Hidaka,