Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9748953 | Journal of Chromatography A | 2005 | 14 Pages |
Abstract
The thermodynamic and extra-thermodynamic dependencies of five types of cytochrome c in water-acetonitrile mixtures of different composition in the presence of immobilised n-octyl ligands as a function of temperature from 278 K to 338 K have been investigated. The corresponding enthalpic, entropic and heat capacity parameters, ÎHassoc°, ÎSassoc° and ÎCp°, have been evaluated from the observed non-linear Van't Hoff plots of these globular proteins in these heterogeneous systems. The relationships between the free energy dependencies, various molecular parameters and extra-thermodynamic dependencies (empirical correlations) of these protein-non-polar ligand interactions have also been examined. Thus, the involvement of enthalpy-entropy compensation effects has been documented for the binding of these cytochrome cs to solvated n-octyl ligands. Moreover, the results confirm that this experimental approach permits changes in molecular surface area due to the unfolding of these proteins on association with non-polar ligands as a function of temperature to be correlated with other biophysical properties. This study thus provides a general procedure whereby the corresponding free energy dependencies of globular proteins on association with solvated non-polar ligands in heterogeneous two-phase systems can be quantitatively evaluated in terms of fundamental molecular parameters.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Reinhard I. Boysen, Agnes J.O. Jong, Milton T.W. Hearn,