Article ID Journal Published Year Pages File Type
9754511 Journal of Pharmaceutical and Biomedical Analysis 2005 6 Pages PDF
Abstract
The mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with human and bovine serum albumin has been studied using fluorescence spectroscopy. There was only one high affinity site on serum albumin for both the drugs with association constants of the order of 105. Negative enthalpy (ΔH0) and positive entropy (ΔS0) values in the case of both meloxicam and nimesulide showed that both hydrogen bonding and hydrophobic interactions play a role in the binding of these drugs. Binding studies in the presence of the hydrophobic probe 1-anilinonaphthalene-8-sulfonate (ANS) showed that the binding of meloxicam and nimesulide to serum albumin involves predominantly hydrophobic interactions. Stern-Volmer analysis of the quenching data showed that quenching is highly efficient and that the tryptophan residues in hydrophobic regions of the proteins are fully exposed to the drugs. Thus these drugs are bound to albumin by hydrophobic interactions as well as hydrogen bonding at a site, which is close to the tryptophan residues. An increase of the pH and ionic strength caused an increase in the concentration of free drug, although the effect was not very significant.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,