Article ID Journal Published Year Pages File Type
975515 Physica A: Statistical Mechanics and its Applications 2007 10 Pages PDF
Abstract
In this paper, we present a simple rule which assigns fitness to each edge to generate random pseudofractal networks (RPNs). This RPN model is both scale-free and small-world. We obtain the theoretical results that the power-law exponent is γ=2+1/(1+α) for the tunable parameter α>-1, and that the degree distribution is of an exponential form for others. Analytical results also show that an RPN has a large clustering coefficient and can process hierarchical structure as C(k)∼k-1 that is in accordance with many real networks. And we prove that the mean distance L(N) scales slower logarithmically with network size N. In particular, we explain the effect of nodes with degree 2 on the clustering coefficient. These results agree with numerical simulations very well.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,