Article ID Journal Published Year Pages File Type
976682 Physica A: Statistical Mechanics and its Applications 2010 8 Pages PDF
Abstract
We consider a family of stadium-like billiards with time-dependent boundaries. Two different cases of time dependence are studied: (i) the fixed boundary approximation and (ii) the exact model which takes into account the motion of the boundary. It is shown that when the billiards possess strong chaotic properties, the sequence of their boundary perturbations is the Fermi acceleration phenomenon which is three times larger than in the case of the fixed boundary approximation. However, weak mixing in such billiards leads to particle separation. Depending on the initial velocity three different things occur: (i) the particle ensemble may accelerate; (ii) the average velocity may stay constant or (iii) it may even decrease.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,